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We extend Lin's result (Canad. Math. Bull. 22, No.4 (1979), 513-515) and
Singh and Watsons' result (1. Approx. Theory 39 (1983), 72-76) to more general
1-set-contractive maps. This class of 1-set-contractive maps includes condensing (or
densifying) maps and nonexpansive maps; it also includes other important maps
such as semicontractive maps and LANE maps. As applications of our theorems,
fixed point theorems are proved under various conditions. The main idea we use, is
one due to Cheney and Goldstein (Proc. Amer. Math. Soc. 10 (1959), 448--450),
that a proximity map in Hilbert space is nonexpansive. '(' 1988 Academic Press. Inc.

1. INTRODUCTION AND PRELIMINARY DEFINITIONS

In [6], Fan proved the following theorem:
Let K be a nonempty compact convex set in a normed linear space X.

For any continuous map f of K into X, there exists a point u E K such that

Ilu - f(u)11 = d(f(u), K).

In [11], the first author proved that the above theorem is true for a
continuous densifying map defined on a closed ball in a Banach space.
Lin [11] also proved that the above theorem is true for a continuous
densifying map defined on a closed convex subset of a Hilbert space.
Recently, Singh and Watson [19] proved that the above theorem is true
for a nonexpansive map defined on a closed convex subset of a Hilbert
space.
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In this paper, we extend above results to more general I-set-contractive
maps. The class of I-set-contractive maps includes densifying maps and
nonexpansive maps. Besides, it also includes other important maps such as
semicontractive maps and LANE maps which were not considered by Lin
[11] and Singh and Watson [19 J. The major idea we used is that the
proximity map is nonexpansive in Hilbert space (due to Cheney and
Goldstein [5]). We remark that the same idea was used by the first author
in [11 J. As applications of our theorems, various fixed point theorems are
proved under various well-known conditions. Hence we extend these fixed
point theorems, at least, in Hilbert space.

Now, we introduce our notations and definitions:
Let B be a nonempty bounded subset of a metric space X. We shall

denote (after Kuratowski [10]) by a(B) the infimum of the numbers r such
that B can be covered by a finite number of subsets of X of diameter less
than or equal to r.

Let S be a nonempty subset of X and let f be a map from S into X. If for
every nonempty bounded subset B of S with a(B) > 0, we have
a(f(B)) < a(B), then f will be called densifying [7]. If there exists k,°~ k ~ 1, such that for each nonempty bounded subset B of S we have
a(f(B)) ~ ka(B), then f is called k-set-contractive [1OJ.

Let X, Y be two normed linear spaces, S a nonempty subset of X, f a
map from S into Y, f is called nonexpansive if for each x, YES, we have
IIf(x)- f(y)11 ~ Ilx-yll. We remark that a nonexpansive map is also a
I-set-contractive map.

We also remark that a densifying map is also called a condensing (or
more precisely set-condensing) map. It is closely related to the condensing
(or more precisely ball-condensing) map developed by Sadovski [17] (e.g.,
see [13,14]).

Let S be a nonempty subset of a normed linear space X. Then, for each x
in X, define

d(x, S) = inf Ilx - yll
yES

and

Ps(X) = {y E S Illx - yll = d(x, S)}.

The set-valued map Ps(x) is called the metric projection on S. IfPs(x) is a
single valued map, it is called a proximity map. The closed convex hull of S
will be denoted by cl co S. The closure of S will be denoted by cl(S) or S.

Let X be a Banach space, S a nonempty subset of X, f a map of S into X.
Then f is said to be semicontractive [1] if there exists a map V of S x S
into X such that f(x) = V(x, x) for x in S, while:

(a) For each fixed x in S, V(·, x) is nonexpansive from S to X.
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(b) For each fixed x in S, V(x,') is complete continuous from S to
X, uniformly for u in bounded subsets of S (i.e., if vj converges weakly to v
in Sand {uj } is a bounded sequence in S, then V(u j , Vj) - V(uj , V) -+ 0,
strongly in S).

Let S be a nonempty closed bounded convex subset of a Banach space
X. We say (after Nussbaum [12]) that a continuous map f of S into X is
LANE (locally almost nonexpansive) if given XES and B > 0, there exists a
weak neighborhood N x of x in S (depending also on f.) such that u, v E N<,
Ilf(u)- f(v)11 ~ Ilu-vll +e. A map g of S into X is called complete con
tinuous (it is also called strongly continuous by some authors) if it maps
weakly convergent sequences into strongly convergent sequences. If a
sequence {uJ converges weakly to Uo in S (denote by uj--->,uo) and
(I - g) uj converges strongly to w, we must have (I - g)(uo) = w, then 1- g

is called demiclosed.
Most definitions that we state above can be found in [13, 14, or 2]. For

completeness, we state above definitions in details. For an expert on fixed
point theory, our preliminaries may seem a little wordy. But for the
majority of the readers~approximation theorists~our treatment may
seem more appropriate and self-contained.

2. MAIN RESULTS

LEMMA 1. Let S be a nonempty closed convex subset of a Banach space
X, f a continuous I-set-contractive map of S into S. Suppose that f(S) is
bounded and (I - I)(S) is closed in X. Then f has a fixed point in S.

This lemma is a special case of [16, Corollary 1.3]. If S is bounded
instead of f(S) is bounded, then the above lemma is well known (e.g., see
[2, p. 230]). We remark that f(S) is bounded if S is bounded.

THEOREM 1. Let S be a nonempty closed convex subset of a Hilbert
space X, f a continuous I-set-contractive map of S into X. Suppose that
either (I-pof)(S) is closed in X or (I-pof) (cl co pof(S)) is closed in X, where
p is the proximity map of X into S. If f(S) is bounded, then there exists a
point u in S such that

lIu- f(u)11 =d(f(u), S).

Proof By [5], P is nonexpansive in Hilbert space. Then pof is a con
tinuous I-set-contractive map of S into S and also of cl co pof(S) into
cl co pof(S). Since f(S) is bounded, pof(S) is also bounded. By Lemma 1,
there exists a point u in S such that pof(u) = u. Hence

Ilu- f(u)1I = IIp(f(u))- f(u)11 =d(f(u), S).
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COROLLARY 1 (Lin [11, Theorem 2]). Let S be a nonempty closed
convex subset of a Hilbert space X, f a continuous densifying map of S into
X. Iff(S) is bounded, then there exists a point u in S such that

Ilu -f(u)11 = d(f(u), S).

Proof Let p be the proximity map of X into S. Since p is nonexpansive
[5] and f is continuous densifying, then pof is also a continuous densifying
map of cl co pof(S) into cl co pof(S). From [15, Lemma 1], (I-pof)
(cl co pof(S)) is closed in X. Since f is also a 1-set-contractive map, from
Theorem 1, there exists a point u in S such that

Ilu - f(u)11 = d(f(u), S).

COROLLARY 2 (Singh and Watson [19, Theorem 5]). Let S be a non
empty closed convex subset of a Hilbert space X, f a nonexpansive map from
S into X. If f(S) is bounded, then there exists a point u in S such that

Ilu-f(u)11 =d(f(u), S).

Proof Following the same proof as that of Corollary 1, pof is a non
expansive and continuous I-set-contractive map of cl co pof(S) into
cl co pof(S). From [1], (I-pof) (cl co pof(S)) is closed in X. By Theorem 1,
there exists a point u in S such that

Ilu - f(u)11 = d(.f(u), S).

Now we consider some maps which are neither continuous densifying nor
nonexpansive. We prove that the above result is still true for these maps.

THEOREM 2. Let S be a nonempty closed convex subset of a Hilbert
space X, f a continuous semicontractive map of S into X. If f(S) is bounded,
then there exists a point u in S such that

Ilu- f(u)11 =d(f(u), S).

Proof From [14, Lemma 3.2 and p. 338], f is a 1-set-contractive map.
Since f is semicontractive, there exists a continuous map V: S x S -+ X such
that f(x) = Vex, x) for XES, V(', x) is a nonexpansive map of S into X
and V(x, . ) is a complete continuous map of S into X, uniformly for x in S.
Since the proximity map p is nonexpansive from X to S, it is easily to see
that poV has all the properties which V has. Therefore pof is a continuous
semicontractive map. From [1], (I-pof)(cl co pof(S)) is closed in X. By
Theorem 1, there exists a point u in S such that

Ilu - f(u)11 = d(f(u), S).

COROLLARY 3. Let S be a nonempty closed convex subset of a Hilbert
space X, g a nonexpansive map of S into X, and h a complete continuous map
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of S into X. Iff = g + hand f(S) is bounded, then there exists a point u in S
such that

Ilu- f(u)11 =d(f(u), S).

Proof Since f = g + h is a semi-contractive map under the represen
tation V( u, v) = g(u) + h(v), this theorem just follows from Theorem 2.

Remark. A semicontractive map and a complete continuous map are
also called a map of semicontractive type [14] and a strongly continuous
map [15], respectively. We also remark that Corollary 2 can also be
viewed as a special case of Corollary 3, if we set h == O.

THEOREM 3. Let S be a nonempty, closed bounded convex subset of a
Hilbert space X, f a LANE map of S into X. Then there exists a point u in S
such that

Ilu- f(u)11 =d(f(u), S).

Proof From [12], f is a I-set-contractive map. Let p be the proximity
map of X into S. Since f is a LANE map and p is a nonexpansive map,
then pof is also a LANE map of S into S. From [12], I-pof is demiclosed.
Now, we claim that (I-pof)(S) is closed. Let YEcl((I-pof)(S)), there exists a
sequence {xn} in S such that xn-pof(xn)-+y. Since S is weakly compact,
there exists a subsequence {x,J of {x n } such that xnj ->. XES. Without loss
of generality we assume that X n ->. x. By the demiclosedness of I-pof, then
x-pof(x) = y and y E (I-pof)(S). Therefore (I-pof)(S) is closed in X. By
Theorem 1, there exists a point u in S such that

Ilu - f(u)11 = d(f(u), S).

THEOREM 4. Let S be a nonempty closed bounded convex subset of a
Hilbert space X, g a LANE map of S into X, and h a complete continuous
map of S into X. If f = g + h, then there exists a point u in S such that

Ilu- f(u)11 =d(f(u), S).

Proof From [14, Remark 3.7], f is also a LANE map. Hence the
conclusion follows from Theorem 3.

3. ApPLICATIONS TO FIXED POINT THEOREMS

THEOREM 5. Let S be a nonempty closed convex subset of a Hilbert
space X, f a continuous 1-set-contractive map of S into X. Suppose that
either (I-pof)(S) is closed in X or (I-pof)(cl co pof( S)) is closed in X, where
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P is the proximity map of X into S. If f(S) is bounded and f satisfies anyone
of the following conditions:

(1) For each XES, there is a number A (real or complex, depending on
whether the vector space X is real or complex) such that 1)01 < 1 and
Ax + (1- A) f(x) E S.

(2) lffor XES with x#f(x), there exists yin Is(x) = {x+c(z-x)1
for some Z E S, some c > O} such that

IIY - f(x)11 < Ilx - f(x)ll·

(3) f is weakly inward (i.e., f(x) E cl Is(x),for each XES).

(4) For any u on the boundary of S with u = pof(u). that u is a fixed
point off

(5) For each x on the boundary of S, Ilf(x) - yll :0:; Ilx - yll for some y
in S.

Then f has a fixed point in S.

Proof Assume that f satisfies condition (1). By Theorem 1, there exists
a point u in S such that

Ilu- f(u)11 =d(f(u), S).

Suppose f has no fixed point in S, then 0 < Ilu - f(u)ll. To this u, there is a
number A such that IAI < 1 and )ou + (1 - A) f( u) = xES. Therefore

0< lIu- f(u)1I = d(f(u), S):O:; Ilx- f(u)11

= 1,1.1 Ilu - f(u)11 < Ilu - f(u)ll,

which is a contradiction. Hence f has a fixed point in S.
Assume that f satisfies condition (2). By Theorem 1, there exists a point

u in S such that

Ilu- f(u)11 =d(f(u), S).

If u # f(u), there exists y in I s(u) such that lIy - f(u)11 < Ilu - f(u)ll. IfYES,
this contradicts the choice of u. Therefore y ¢ S, and there exists Z E S such
that y=u+c(z-u) for some c>1. That is z=(l/c)y+(l-(1lc))u=
(1- fJ) y + fJu, where fJ = 1 - (l/c), 0 < fJ < 1. Hence

Ilz- f(u)11 = 11(1-fJ)y+fJu- f(u)11 :O:;(l-fJ) Ily- f(u)11 +fJ Ilu- f(u)11

< (1 - fJ) Ilu - f(u)11 + fJ Ilu - f(u)11 = Ilu - f(u)ll,

which contradicts the choice of u. Therefore u = f(u).
It is not hard to show that if f satisfies the condition (3), then f also

satisfies the condition (2).
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For the conditions (4) and (5), using Theorem 1 and following the same
proof as that of [19, Theorems 6, 7], we can conclude that f has a fixed
point in S.

Remark. The conditions (1) and (2) were first considered by Fan [6]
and Browder [3] in an attempt to extend fixed point theorems to inward
and weakly inward maps. The definitions and study of inward and weakly
inward maps was begun by Halpern [8,9]. The condition (4) was con
sidered by Browder and Petryshyn [4]. Shoenberg considered (5) in [18].
From the following Corollaries 4-8 we do extend the above theorems, con
sidered by various authors mentioned above, in Hilbert space.

COROLLARY 4. Let S be a nonempty closed convex subset of a Hilbert
space X, f either a continuous densifying map or a nonexpansive map of S
into X. If f(S) is bounded and f satisfies anyone of the five conditions of
Theorem 5, then f has a fixed point in S.

Proof Following the same proof as that of Corollaries 1 and 2, we can
show that (I-pof)(cl co pof(S)) is closed in X, where p is the proximity map
of X into S. From Theorem 5, f has a fixed point in S.

Remark. Lin [11] and Singh and Watson [19] gave partial results of
Corollary 4 for a continuous densifying map and a nonexpansive map,
respectively.

COROLLARY 5. Let S be a nonempty closed convex subset of a Hilbert
space X, f a continuous semicontractive map of S into X. If f(S) is bounded
and f satisfies anyone of the five conditions of Theorem 5, then f has a fixed
point in S.

Proof Following the same proof as that of Theorem 2,
(I-pof)(cl co pof(S)) is closed. Since f is 1-set-contractive [14], from
Theorem 5, f has a fixed point in S.

COROLLARY 6. Let S be a nonempty closed convex subset of a Hilbert
space X, g a nonexpansive map from S into X, and h a complete continuous
map from S into X. If f = g + h, f(S) is bounded, and f satisfies anyone of
the five conditions of Theorem 5, then f has a fixed point in S.

This is just a corollary of Corollary 5.

COROLLARY 7. Let S be a nonempty closed bounded convex subset of a
Hilbert space X, f a LANE map of S into X. Iff satisfies anyone of the five
conditions of Theorem 5, then f has a fixed point in S.
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Proof From the proof of Theorem 3, (I-pof)(S) is closed in X, where p
is the proximity map of X into S. From Theorem 5, f has a fixed point
in S.

COROLLARY 8. Let S be a nonempty closed bounded convex subset of a
Hilbert space X, g a LANE map of S into X, and h a complete continuous
map of S into X. Iff = g + h, and f satisfies anyone of the five conditions of
Theorem 5, then f has a fixed point in S.

Proof Since f is also a LANE map [14, Remark 3.7], this corollary
follows from Corollary 7.
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